Горючесть алюминиевых фасадных конструкций: миф и реальность

Алюминий и его сплавы являются наиболее распространенными среди цветных металлов материалами и находят все более широкое применение в транспорте, строительстве, упаковке, электротехнике и производстве предметов быта. Благодаря уникальному комплексу свойств они успешно выдерживают конкуренцию со стороны других конструкционных материалов таких как сталь, бетон, дерево, пластмассы, стекло и др.
К сожалению, в России — одном из крупнейших мировых производителей первичного алюминия — использование алюминия для этих целей существенно отстает от уровня развитых стран. Из произведенного в прошлом году 3,76 млн. т. алюминия только немногим более 600 тыс. т. было использовано в виде изделий для внутреннего потребления в стране.
Причин этому несколько. В первую очередь, низкий спрос на алюминиевую продукцию в России обусловлен значительным спадом промышленного производства. Однако немаловажную роль сыграло имевшее в советское время подчинение потребления цветных сплавов нуждам военно-промышленного комплекса и, как следствие, недостаточная до настоящего времени осведомленность производителей и потребителей гражданской промышленной продукции о свойствах алюминия и его сплавов и их преимуществах в сравнении с другими материалами.
Отсюда и ошибочные представления у многих, например, о токсичности или излишне высокой стоимости алюминия, невысокой коррозионной стойкости или недостаточной механической прочности его сплавов и др. А эти стереотипы создают препятствие применению алюминия в изделиях, сооружениях и машинах.
Очередной миф — “ѕалюминиево-магниевые сплавы горятѕ и специалисты-материаловеды, работающие в авиации, это прекрасно знают...”. Почти сорокалетний опыт работы автора в авиационной промышленности, связанный с плавлением, литьем и горячей обработкой давлением практически всех марок алюминиевых деформируемых сплавов, позволяет судить об ошибочности этого утверждения.
Известно, что горение — это высокотемпературное окисление, характеризующееся высокой скоростью процесса и выделением значительного количества тепла. Поэтому представления о горючести алюминия и его сплавов в первую очередь связаны с большим сродством алюминия к кислороду.
Алюминий отличается от меди и железа значительно более высокой теплотой окисления. Его окисел очень стабилен и плохо восстанавливается. Это свойство широко используется в металлургии, где алюминий применяют в качестве раскислителя.
Известно, что при нагреве мелко раздробленного алюминия он энергично сгорает на воздухе. При этом выделяется 31 кДж энергии на 1 г окислившегося алюминия, это чуть меньше тепла, образуемого при сгорании 1 литра природного газа. Чем мельче частицы алюминия, тем необходима меньшая температура нагрева.
Так алюминиевый порошок, смешанный с выделяющими кислород веществами, начинает интенсивно гореть при температуре воспламенения 250-300°С. Распыленный же в воздухе алюминиевый порошок с размерами частиц менее 100 мкм способен образовывать взрывчатую смесь при комнатной температуре.
Еще один пример возгорания дисперсного алюминия — горение капель алюминиевого расплава в шлаке, снятом с зеркала ванны печи. Исследования показывают, что в этом случае сгорают капли размером 1 мм и менее. Их доля в шлаке может достигать 20-25%.


Теплота окисления металлов (кДж / моль О2)

В компактной же форме алюминий и алюминиево-магниевые сплавы ни в твердом, ни в расплавленном состояниях в атмосферных условиях не горят, не поддерживают горения и не способствуют распространению пламени. Это свойство алюминиевых сплавов позволяет успешно плавить их в пламенных отражательных печах, подвергая непосредственному окислительному воздействию пламени горелок. 1 2 3 4 Следующая

Журнал ОКНА. ДВЕРИ. ВИТРАЖИ




Смотрите также


Copyright © 2010-2018 remondom.ru. Контакты: info@remondom.ru При использовании веб-сайта Справочник строителя, гиперссылка на источник обязательна.